’. e i3

Netherlands . TNO Physics and Electronics I
organization for ’ Laboratory
e applied scientific
research P.O. Box 96864]
2509 JG The Hague
Oude Waalsdorperweg 63
TNO-report The Hague, The Nethertands

Fax +31 70328 09 61
Phone +31 70 326 42 21

S —

title ;
report no. © COpYy no. N ke
FEL-91-B183 9 Building a GIS on top of
the open DBMS “Postgres” :

AD-A245 369 ,
LU .

Nothing from this issue may be reproduced

and/or published by print, photoprint,

microfilm or any other means without

previous written consent from TNO.

Submitting the report for inspection to

parties directly interested is permitted. author(s):

In case this report was drafted under PJ.M. van Oosterom

instruction, the rights and obligations Tt
of contracting parties are subject to aither C. Vijlbrief

the "Standard Conditions for Research
Instructions given to TNO' or the relevant
g db the g

‘:amon account of the research object :l:gust 1991 ELECT E
+TNO FEB 0 41992

B TR

B —

(i e

classification
title : Unclassified
- abstract : Unclassified

report : Unclassified
no. of copies 130

. no. of pages : 25 (excl. RDP & distribution list)

This docurent has been appendices -
[lox public teleass and saﬂ ﬁrsw.d
tribution is unlimited,

¥
v
&

Al!nfolmlnonwxchisclusmodmﬂingbbuehmh-
tions shall be treated by the recipient in the same way s classi-
: fied information of corresponding value in his own country. No

) 2—02807 past of this information will be disclosed 1o any party.

L
92 2 03 169

TNO repont

Page

rappon no. ¢ FEL-91-B183
title : Building a GIS on top of
the open DBMS “Postgres”
author(s) : PJ.M. van Oosterom
C. Vijlbrief
institutes : TNO Physics and Electronics Laboratory
TNO Institute for Perception
date 1 August 1991
NDRO no. HE
no. in pow 91 : 7093 (FEL)
Research supervisedby : -
Research carried out by : P.J.M. van Qosterom
C. Vijtbrief
Abstract (Unclassified)

Many commercial Geographic Information Systems have a dual architecture: the thematic infor-
mauon is stored in a relational dambase managcmem system and thc spaual inf rmauon is stoy

be retrieved and compiled from components that may be stored far apart in the two sul
We present a solution based on the extendable database management system “Postgres,” in wh:ch
thematic and spatial data are stored together.

oS

The contents of this report was presented at the Second European Conference on Geographical
Information Systems, EGIS 91, Brussels, Belgium, April 2-5, 1991. This contribution was
classified by the EGIS'91 Program Committee to belong to the five best papers out of 150 papers
selected from 325 proposals.
:cve. ion E-olrk __-_J’L
A

NTIS Cn!‘«al N
CThe Ta3 i
U rganou cad 3
Justincation -

Dist-ib-tio: I

P o —a -

— e e e e ey

Avail.‘vl’i.rty [

Dist Special

A4l |

s TR TR el tay S N

PORSREU

Y

UNCLASSIFIED
REPORT DOCUMENTATION PAGE (MOD-NL)
DEFENSE REPORT NUMBER (MOD-NL)2. RECIPIENT'S ACCESSIONNUMBER 3. PERFORMING ORGANIZATION REPORT
NUMBER
91-2613 FEL-91-8183
4. PROJECT/TASKWORKUNITNO. 5. CONTRACT NUMBER 6. REPORT DATE
22561 - AUGUST 1991
7. NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES COVERED
26 (ONCL ROP, 3 FINAL REPORT
EXCL DISTRIBUTION LIST)
10. TITLE AND SUBTITLE

BUILDING A GIS ON TOP OF THE OPEN DBMS *POSTGRES"

1.

ALTHOR(S)
P.J.M. VAN OOSTEROM
T. VULBRIEF

12,

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TNO PHYSICS AND ELECTRONICS LABORATORY, P.O. BOX 96864, 280¢ JG THE HAGUE
OUDE WAALSDORPERWEG 63, THE HAGUE, THE NETHERLANDS

13

SPONSORING/MONITORING AGENCY NAME(S)
TNG DIVISION OF NATIONAL DEFENSE RESEARCH, THE NETHERLANDS

14,

SUPPLEMENTARY NOTES

18

ABSTRACT (MAXIMUM 200 WORDS, 1044 POSITIONS) -

MANY COMMERCIAL GEOPGRAPHIC INFORMATION SYSTEMS HAVE A DUAL ARCHITECTURE: THE THEMATIC
INFORMATION IS STORED IN A RELATIONAL DATABASE MANAGEMENT SYSTEM AND THE SPATIAL INFORMATION IS
STORED IN A SEPARATE SUBSYSTEM CAPABLE OF DEALING WITH SPATIAL DATA AND SPATIAL QUERIES. BESIDES NOT
BEING ELEGANT CONCEPTUALLY, THIS DUAL ARCHITECTURE ALSO REDUCES THE PERFORMANCE, BECAUSE
OBJECTS HAVE TO BE RETRIEVED AND COMPILED FROM COMPONENTS THAT MAY BE STORED FAR APART IN THE
TWO SUBSYSTEMS. WE PRESENT A SOLUTION BASED ON THE EXTENDABLE DATABASE MANAGEMENT SYSTEM
"POSTGRES", iN WHICH THEMATIC AND SPATIAL DATA ARE STORED TOGETHER.

THE CONTENTS OF THIS REPORT WAS PRESENTED AT THE SECOND EUROPEAN CONFERENCE ON GEOGRAPHICAL
INFORMATION SYSTEMS, EGIS ‘91, BRUSSELS, BELGIUM, APRIL 2-5, 1991. THIS CONTRIBUTION WAS CLASSIFED BY THE
EGIS91 PROGRAM COMMITTEE TO BELONG TO THE FAVE BEST PAPERS OUT OF 150 PAPERS SELECTED FROM 325
PROPOSALS.

16. DESCRIPTORS DENTPERS
GEOSRAPHY GEOGRAPHICAL INFORMATION
INFORMATION SYSTEMS SYSTEMS
DATABASES POSTGRES

17a. SECURITY CLASSIFICATION 175. SECURITY CLASSIFICATION 17¢. SECURITY CLABSIFICATION
(OF REPORT) (OF PAGE) (OF ABSTRACT)
UNCLASSIRED UNCLASSIRED UNCLASSIFED

18. DISTRIBUTIONAVALABILITY STATEMENT 17d. SECUNITY CLASSIFICATION

OF TN
; UNUMITED AVARABLE UNCLASSIFED

- TNO report
Page
3
rapport no. : FEL-91-B183
titel : Het bouwen van een GIS op basis
van het open DBMS “Postgres™
auteur(s) ¢ PJM. van Oosterom
C. Vijlbrief
instituten ¢ Fysisch en Elektronisch Laboratorium TNO
Insituut voor Zintuigfysiologie TNO
datum ¢ Augustus 1991
hdo-opdr. no. I
no. in iwp '91 : 7093 (FEL)
Onderzoek uitgevoerd olv. -
Onderzocek uitgevoerd door PJ.M. van Oosterom
C. Vijlbrief

Samenvatting (Ongerubriceerd)

Vele commercicle Geografishe Informatiesystemen hebben en duale architectuur: de thematische
informatie is opgeslagen in een relationeel database management systeem en de ruimtelijke infor-
matie is opgeslagen in ecn apart subsysteem dat geschikt is voor het behandelen van ruimtelijke
gegevens en ruimtelijke vragen. Naast het feit dat dit conceptueel geen clegante oplossing is, is
er verder het nadeel dat deze duale architectuur de presaties van het systeem vermindert, omdat
voor een object de declcomponenten uit beide subsystemen opgehaald moeten worden en daara
moeten worden geintegreerd tot een compleet object. Wij presenteren cen oplossing gebaseerd
op het vitbreidbare database management systeem “Postgres,” waain thematische en ruimtelijke
gegevens bij elkaar worden opgeslagen.

De inhoud van dit rapport is gepresenteerd op de Second European Conference on Geographical
Information Systems, EGIS '91, Brussels, Belgium, April 2-5, 1991. Deze bijdrage werd door de .
EGIS'91 programma commissie beoordeeld als &n van de vijf beste uit de 150 bijdragen welke 3
op hun beurt uit 325 voorstellen waren geselecteerd.

TNO report

Page
4

Contents
Abstract 2
Samenvatting 3
Contents 4
1 Introduction 5
2 DBMS Capabilities required by GIS applications 6
2.1 GeographicDataTypesot i v ittt ittt e e e s 7
22 Spatial Operators. v b i e e e e e e e e e 7
2.3 Spatial Indexing Techniques i 8
3 Description of Postgres 9
3.1 The Architecture of POSIZIES o v v vttt it it e v s e e n oo 9
32 TheQueryLanguagePostquel it inn ... 9
33 DefiningaUserType vt v it v vt i ittt i i e in s e s 10
34 TheREE i i e e e e 12
4 Implementation of a GIS on top of Postgres 15
3 T 1 15
42 TheGEOSYSIEMt ittt n e et it tesseevea e e 16
43 ThePosigresLayerttt ii it 17
44 DynamicDisplay i i, 19
§ Conclusion 20
Acknowledgments 21
Bibliography n

e ANy

TNO report

1 Introduction

Many of today's information systems are built around a relational database (RDBMS). The
geographic nature of the data in Geographic Information Systems (GISs) results in a number of
problems for an RDBMS. It is impossible to state queries like: “Which cities with a population
greater than 100,000 lie within 10 kilometers from the river Rhine” in the data manipulation
language of an RDBMS. Even if it were possible to state this type of queries, then they could not
be answered efficiently, because an RDB#IS lacks the proper multi-dimensional index structures.
Therefore, the storage system often consists of two major subsystems. We will call this the dual
architecture. The first subsystem is based on an RDBMS and contains the alphanumeric thematic
data. The second subsystem is a special purpose storage system, capable of dealing with spatial
data. An object, that has both a thematic and a spatial component, has parts in both subsystems
which are linked by common identifier. In order to retrieve one object, two subsystems have to be
queried and the answer has to be composed. Many commercial GISs have chosen this inefficient
and inelegant dual architecture.

We investigate a data model that does not have this dual architecture. We have chosen the
relational data model as our starting point, because it is a powerful and well-known model. The
required extension to the relational data model is based the incorporation of [30]: geographic data
types (¢.g., line, polygon), spatial operators (¢.g., distance, overiap, nearest-neighbor), and spatial
index structures (¢.g., R-tree [12], KD2B-tree [29]). However, most DBMSs are closed, i.c., itis
impossible to add new data types, operators, or index structures. An exception is Postgres [23],
an experimental DBMS developed at the University of Califomia, Berkeley. We are developing a
prototype GIS based on Postgres.

Chapter 2 states the functionality that a GIS demands from a DBMS. Besides the functional
aspects, this paper also pays attention to performance aspects of a solution. Our prototype GIS,
called the GEO system, is implemented on a 3un 3/60 workstation. Before describing this system
in Chapter 4, a short introduction to the most important aspects of Postgres is given in Chapter 3.
This paper is concluded in Chapter § with some final remarks and suggestions for future research
and development.

P —— — el

- TNO report -

=)

2 DBMS Capabilities required by GIS applications

GISs require more capabilities from a DBMS than the traditional business data processing systems.
This is also true for other spatial information systems, such as CAD systems. The mathematically
sound relational data model [4) is the starting point for the following discussion. This chapter
enumerates the most important requirements of a DBMS that is used by a GIS. The DBMS must:

rl Store all the data in one storage system, that is, both the spatial data and the non-spatial (or
thematic) data. This avoids the drawbacks of a dual architecture.

r2 Support that tuples of the same relation may have different sizes. This is a very common
situation in GISs as the number of points per polyline or polygon is not fixed.

r3 Represent Complex objects. Various geographic objects consist of multiple components.
For exampie, the representation of a city may consist of a collection of roads, buildings, and
various other terrain clements. These must be quickly accessible.

r4 Enable the exchange of complete geographic data sets (including the possible relationships
between the different individual entities) between various GIS sites.

r5 Support (or be extendable to support) both raster and vector data. The vector data can be
' subdivided in the following three geometric data types: point, polyline, and polygon. There
must be two and three dimensional variants of these types; see Section 2.1.

r6 Support the following three categories of spatial operators: geometric calculation operators,
topological operators, and spatial comparison operators; see Section 2.2.

r7 Provide spatial index structures. As GISs usually deal with large collections of geographic
data, a spatial index structure is indispensable; see Section 2.3.

r8 Provide big tuple attributes, because polylines, for example, may contain thousands of :
segments. ;
9 Allow the implementation of an advanced graphic user-interface through a direct interface :
with a high level programming language, such as C. ;

These requirements are not independent of each other. For example, the fact that all data types
have to be stored in one storage system (r7), causes most of the other requirements. Requirements
r5, r6, and r7 are explained in more detail in the next three sections.

¥ s e o

TNO report

Page
7

{a] create tower (name = charlé, owner = charlé, location = point2)
{b] create road (name = charl6, shape = polyline2)
[c] create town (name = charlé, #inhabitants = int4, shape = polygon2)

Figuur 2.1: Relations with geographic attributes
2.1 Geographic Data Types

Nearly all geographic data processing [16, 25, 26] is performed with vector, raster, or a combination
of these geometric data formats. The vector format has three subtypes: point, polyline and
polygon. The emphi=is is on the vector representation, because it allows more flexible object-
oriented manipulations, though the raster representation also has advantages; see [27). Although
their representations might be complex, these data types must be regarded as atomic values in the
data model.

Figure 2.1 demonstrates the use of geographic attributes in relations using the Postquel query
language; see Section 3.2. The “2” behind point, polyline, and polygon indicates that these are
iwo dimensional attributes. Similarly, it is possible to have three dimensional variants of these
data types; a “3” behind the type.

2.2 Spatial Operators

This chapter describes the basic spatial operators. More complex operators exist, but do not
have to be included in the basic GIS database system. For example, not included are: network
calculations, advanced visualization techniques, simulation, and complex geometric ca'culations,
such as calculating the Voronoi diagram, the convex huil, or the smallest enclosing circle. Although
polygon-overlay is a complex operation, it is used in many GIS applications, and it must be added
to the set of standard operators. The polygon-overlay takes two sets of polygons and calcuiates
all intersections, which results in a third set of polygons.

Many spatial operators or functions have been described by various authors (2, 11, 13, 14, 19]. We
do not claim that our lists of operators are complete, but they should give & good impression of the
basic spatial operators. We distinguish three fundamental ciasses of spatial operstors in addition
to the more standard operator classes (c.g., comparison, logical, statistical, and set operators) in
an RDBMS:

1. Geometric calculation operators retumn a scalar value or a geometric value. Some of the
most important operators are: distance, length, perimeter, area, closest,
intersection, and union.

2. Topological operators retum a geometric value. Some examples: neighbors, next link (in

EEERR ooy R P

TNO report

Page
8

a polyline network), left and right polygons of a polyline, start and end nodes of polylines.
We do not need an extra set of topological operators, because the topological model can be
captured in a natural manner in the standard relational model; see (30].

3. Spatial comparison operators return a Boolean: true or false. Although the calcula-
tions are similar to the previous classes of operators, they form a separate group. Some
examples are: intersects, inside, larger_than, outside, north of, on, and
neighbor_of. All comparison operators have two operands, which may be, in most
cases, of any geometric type. Note that it is often possible to emulate these operators by
combining the standard comparison operators with the geometric or topological operators.

As stated above, there can be other spatial operators that are useful for a specific application. But it
is impossible to include them all in this paper. An “open” database is the solution for the dilemma
which operators do befong and which operators do not belong to the system. If an operator is
not available in the set of basic spatial operators, it can be implemented by the user and, after it
has been certified, added to the database system. In this way other users also benefit from the
new capabilities. Note that organizational actions have to be taken, For example, someone must
ensure the clear and unique naming of operators. It is possible to formulate queries using the basic
spatial operators as will be demonstrated in Chapter 3.

2.3 Spatial Indexing Techniques

The B-tree [1], an indexing technique used in many DBMSs, combines several desirable properties.
It is a dynamic, height balanced structure, i.c., insertions, deletions, and vpdates of entrics may be
altemated with searches. Because of the balanced nature, searches are efficient (O(log 1) time).
Also, the nodes in the B-tree are at least half filled. This results in a compact structure.

However, the B-tree is only suited for scarching based on one dimensional attributes, such as
numbers or strings. Multiple indices on more than onc attribute of a relation are possible, but
(with current implementations of RDBMSs) only one can be used for solving a query like:

retrieve (tower.all)
where 5 < tower.location.x < 10
and 12 < tower.location.y < 20.

These point queries can be solved efficiently by the KDB-tree [18] index structure. The KDB-tree
is a KD-tree adapted for secondary storage and can handle point data in any dimension. The
KD-tree cannot handle the polyline and polygon data types. In the literature there are several
solutions for this problem, such as: the R-tree [5] (see Section 3.4), the Field-tree [6, 7], the Ceil
tree (10}, the KD2B-tree, the Sphere-tree [29], and the Reactive-tree [28]. When fine-tuning the
application, the proper indexing technique has to be selected.

TNQ report

o8

3 Description of Postgres

This chapter gives an introduction to the open DBMS Postgres. A more detailed functional
description can be found in [22] and several implementation decisions are discussed in [23]). The
Postgres reference manual [33] contains all the information required to use the system. Postgres,
the successor of Ingres, is a research project directed by Michael Stonebraker at the University
of Califomia, Berkeley. The characteristic new concepts in Postgres are: support for complex
objects, inheritance, user extendability (with new data types, operators and access methods),
versions of relations, and support for rules. The later may be used to implementation constraints.

In the next sections we explain the features that are of interest to GISs. We will illustrate these
features with some GIS examples based on the current version of Postgres (version 2.0.3). First,
Section 3.1 describes the global architecture of Postgres. The next section describes the query
language Postquel and Section 3.3 gives an example with a user defined type. In Section 3.4 the
spatial access method that is available within Postgres, the R-tree, is described.

3.1 The Architecture of Postgres

Postgres can be viewed as a collection of files and processes that operate on these files. The files
contain the relations and data required for the access methods, that is, the B-tree or the R-tree itself.
A daemon process posmaster handles the communication between the backend (the process that
does the real DBMS work and is therefore called Postgres) and the frontend or application. The
postmaster starts a backend process for each application that requests the services of Postgres. A
standard Postgres application is the monitor, an alphanumeric user-interface for Postgres. The user
may state Postquel queries and the answers are displayed in a tabular format. New applications
can be developed based on Postgres by using the C library functions of Jibpg. This library contains
functions to pass the queries to the backend and 10 interpret the buffers, called portals, which are
used to retum the results. Another way of interacting with Postgres is by using the fast path.
The fast path makes it possible to call Postgres system functions directly. In this way the query
language is bypassed and best performance is achieved by calling the access methods.

3.2 The Query Language Postquel

The query language Postquel is based on three concepts:

¢ There are three kinds of data types: base types (built-in, system, and user), array types
(fixed and vasisble length) and composite types (tuple, set of tuples, and relation).

. ‘ X TNO report

[a) retrieve min{(distance(tower.location, ®(10,15)*::point2))
[b) retrieve closest(tower.location, *(10,185)"::point2))
[c] retrieve (tower.name)
where inside((retrieve (town.poiygon)
where town.name = "Amsterdam”), tower.location)

Figuur 3.1: Postquel queries using geographic functions

o The following kinds of functions are available: normal functions (C or Postquel), operators
(binding of a symbol to a function), aggregate functions (count, sum, average, min, max,
etc.), and inheritable functions.

¢ Rules have the form: *“on condition then do action” and they are used to trigger DBMS
actions. Section 4.4 gives an example.

User defined types, with their own functions and operators, are of particular interest, because
these may be used to define the geographic data types. Section 3.3 describes the user types in
more detail. The database administrator may “upgrade” user types to system types, making them
available to each data base created on the system.

The current distribution of Postgres already contains a system type cxample that approximates
a two dimensional variant of the extension with geographic data types we proposed. It consists
of the four types: point, lseg, path, and box. The type 1seg implements a single line
segment. Polylines and polygons may be represented by path, which is a variable length amray
of 1seg. The special case of a two dimensional axes-parallel rectangie is represented by the
type box. Some useful functions and operators are provided (test for overlapping boxes, test if a
point lies inside a box, the distance between two points), but more are required for a really good
geographic extension of the DBMS; see Section 2.2.

Some practical GIS example queries show how geographic functions might be used in Postquel;
see Figure 3.1. Query [a] is a “minimum distance” query. This will not work in Postgres
' version 2, because the aggregate function min is not yet implemented. The next query (b] does
! the same thing, but is formulated more efficiently by using the function closest. The last
example, query [c), uses the inside function in order to retrieve all the names of the towers in
Amsterdam.

3.3 Defining a User Type

! The example in this section defines the new user type circle. This example is based on the tutorial
| distributed with Postgres. It is important to realize that, in Postgres, there is a difference between
. : the internal and the external representation of a type. The extemnal representation is a character

string foruser input and output as used in the monitor. Inthe case of acircle this could be: (center.x,

PPN A OIS T

o s .

e it i e

P TNO report

#include <stdio.h>

typedef struct { double x, y; } POINT;

typedef struct { POINT center; double radius;)} CIRCLE;
/* The internal representation */

CIRCLE *circle_in(str)
/* Convert from external to internal representation */
char *str;
{
/* Allocate new CIRCLE, parse string, return result. */

)

char *circle_out(circle)
/* Convert from internal to external representation. */
CIRCLE *circle;
{
char *i1esult;
if (circle == NULL) return(NULL);

result = (char *) palloc(60);
(void) sprintf(result, "(%g, %g,%g)"°,
circle->center.x, circle->center.y, circle->radius);
return(result);
}

char circle_area_greater(circlel, cir~le2)}

CIRCLE *circlel, *circle2;
{ return(circlel->radius > circle2->radius);)

Figuur 3.2: A part of the C source code defining the new type circle

e Lt e

%
2
i3

TNO report -

Page
12

fa) define C function circle_in (file = *circle.o", }
returntype = circle) arg is (charlé)

[b]) define C function circle_out (file = *circle.o”,
returntype = charlé) arg is (circle)

{c] define type circle (internallength = 24, input = circle_in,
output = circle_out)

[d) define C function circle_area_greater (file = "circle.o",
returntype = bool) arg is (circle, circle)}

[e] define operator > (argl = circle, arg2 = circle,
procedure = circle_area_greater)

[£] create tutorial {a = circle)

[g] append tutorial (a = *(5,1,9)"::circle)

[h] append tutorial (a = "{2,2,5)"::circle)

fi] append tutorial (a = *(0,1,7)%::circle)

[7} retrieve (tutorial.all) where tutorial.a > "(0,0,8)"::circle

Figuur 3.3: The Postquel part of defining the new type circle

center_y, radius), for example, (0, 0, 1): the unit circle. The intemal representation determines
how the type is organized in memory, just as in the programming language C. Figure 3.2 shows
the C code that defines the internal representation of the new type circle and some C functions for
it. Assume that this is stored in the file circle.c.

The functions circle-inand circle_out perform the conversions between external and inter-
nal representations. There is also one operator function for this type: circle.area greater,
which determines whether the area of the first circle is greater than the area of the second one.
After compiling, which produces the object file circle. o, Postgres must be informed about
the existence of the new type and its functions: first the conversion functions are defined (see
Figure 3.3 queries [a,b]). then the new type {c] is defined, and finally the operator function [d] and
it’s symbolic representation [¢] arc defined; an “>" sign. Now it is possible to create relations
with circles in them [f], append records to them [g,h,i], and retrieve the circles which have an area
greater than the circle (0,0,8) [j]. The result of the last query [j] is of course the circle (5,1.9).

3.4 TheR-tree

The R-tree was defined by Guttman [12] in 1984. The leaf nodes of the R-tree contain entries
of the form: (/,object-identifier), where object-identifier is a pointer to a data object and J is a
bounding box (or Minimal Bounding Rectangle, MBR). The intemal nodes contain entries of the
form: (I,child-pointer), where child-pointer is a pointer to a child node and [is the MBR of that
child. The maximum number of entries in each node is called the branching factor M and is
chosen 10 suit paging and disk 1/O buffering. The insert and delete algorithms of Guttman assure
that the tree is balanced (all leaf nodes are on the same level) and that the number of entries in
each node lies between m and M, where m < M /2 is the minimum number of entries per node.

T o et - .

TNO report

Page
13

Figure 3.4 shows an R-tree with two levels and M=4. The lowest level contains three leaf nodes
and the highest level contains one node with pointers and MBRs of the leaf nodes.

PR — N N EN

L__IE H g|1:»|E: rle] [mlzlalk] [LlM]n

EN C Branching factor M = 4
Figuur 3.4: The R-tree

The information in the remainder of this chapter is based on the beta version of the R-tree in
Postgres and is provided by Mike Olson[17]. The R-tree will be included in the next public
release of Postgres (version 2.1). The performance tests with the R-tree of Postgres are done nn
DECstation 5000/200 under Ultrix 4.0. The use of the R-tree is similar to the usc of the B-tree
in Postgres. That is, one can use the Postquel construct define index to define an index on
the region attribute of the relation testrel; see Figure 3.5 [a,d]. The R-tree can be used with
system type box and the following operators:

operator | meaning
<< box a is strictly left of box b

b
&< b | aisleft of b, or overlaps b, but does not extend to the right of b
&& b { aoverapsb
b
b

a is night of b, or overlaps b, but does not extend to the left of b
ais strictly right of b

@ b | aiscontained by b

~ b | acontainsb

~= b | a and b are the same box

A AR A A A A N
v
v

The relation t est rel is populated (Figure 3.5 [b]) with 30,000 rectangles, sides random between
0 and 1000, and origins random distributed in three regions 10,000 in (0, 0, 10000, 10000), 10,000
in (30000, 10000, 50000, 30000), and 10,000 in (0, 0, 50000, S0000). This data set is chosen,
because it is representative for map data: objects of different sizes and a population density that
is not constant over the whole region. Figure 3.5 [c] shows a rectangle overlap query. This is an
important type of query, because it is used to generate maps on the rectangular screen. A point
query, used for implementing a “pick™ operation, can be formulated by taking a box with equal
diagonal comer points,

A restrictive spatial query, that retrieves up to 100 objects, without the R-tree takes about 85

TNO report

14

[a] create testrel (region = box)

[b) append testrel /* append lots of tuples */

[c] retrieve (testrel.all) where testrel.region && "(98,20,9,10)"::box
[d] define index testind on testrel using rtree (region box_ops)

Figuur 3.5: Defining an R-tree index for the relation testrel

scconds using a sequential scan. Building an R-tree index on the test relation with 30,000 objects
takes about 35 minutes. However, now the same spatial queries run typically a few hundred times
faster using the index scan. As the size of the relation grows, the gain of the index-scan will
become larger and larger compared to the sequential scan,

The size of the file that contains the testrel is 3.0 Mb. The size of the file that contains the
index testind is 6.7 Mb. This may seem a lot in comparison the relation testrel, butin the
case of GIS-application with tuples that have polygon attributes varying from 10 to 1,000 points,
the overhead of the R-tree is quite acceptable.

eimm—

TNO report

4 Implementation of a GIS on top of Postgres

We have built the GEO system, a general purpose GIS frontend for Postgres. The system has a
“direct manipulation user-interface,” allows us to implement real world GIS systems, and allows
us to experiment with the user-interface and various data structures and storage techniques. Some
of the expected applications are: electronic sea-maps and various Command and Control (C2)
systems. The current prototype system is written in C** [24] and uses the ET** [31, 32] class
library.

41 ET++

ET** is a C** class library, written by Andre Weinand, Erich Gamma and Rudolf Marty of the
University of Ziirich. The library consists of a Smalltalk-like collection of classes, just as Keith
Gorlen’s NIH! (9] class library. The library further contains graphic user-interface building blocks
in a manner similar to Interviews. In contrast to NIH and Interviews, ET** contains both in an
integrated design.

An exccutable ET** program attaches automatically to the actually used Window System: X11
{8. 20], NeWS, or SunView. The visual appearance of the program is the same in each of the
window systems. The running program also behaves the same. This is possible because ET+
defers calling of the actual underlying window system till the lowest level of drawing lines and
pixels. The fonts used and the layout and interaction of the user-interface building blocks give
it a Macintosh appearance. This is no coincidence, since the authors based many of their ideas
on the MacApp framework [21). In the context of user-interface design, ET** has the advantage
over most other graphic user-interface toolkits (SunView, XView, Xt-widgets) that it enables the
designer to change every aspect of the visual appearance and “look and feel” by overruling the
appropriate methods in the C** class inheritance framework. This allows us to implement our
own ideas of the ideal “look and feel” without rewriting most of the toolkit. Other features which
can be built with with minimal programming effort using ET*+* , are:

o A Smalltalk-like class hierarchy and source browser.
o Dynamic loading.
o Generic object 0.

¢ Cut and Paste between applications.

s Multiple panes: a window can be split into two or four sections which show different
portions of the image in the window. Each pane has individual scrollbass.

The original name of NIH was OOPS.

TNO report

how Bt
0 e D seme & gt
0 o O wetiee 0O i
(3 N tise a wehee 0 wetwe
I 0 vete 0O wehwe O seten
(3 wetieie O wenae 0 whes
0 et 0O Nefis 0 sates
[weFiae O Wehee 0 netee
0 et 0O wetew 0O satme

e

Figuur 4.1: The user-interface of the GEO system, showing a composed query

o Generation of a PostScript file, containing the contents of a window. The output does not
result in a bitmap image, but uses the full resolution of the PostScript device.

4.2 The GEO system
The GEQ system has the following features:

1. A special purpose data structure layer (currently our own R-tree implementation). The
layer allows the display of geographic data not stored in Postgres because query asking
functionality is not required. This special purpose database is fast and can be used for map
background dats, such as landmass contour data, rivers, esc. When the R-tree becomes
available within Postgres and proves to be efficient, then the special purpose data structure
layer will be removed.

2. A Postgres layer which enables the end-user to formulate queries by using a “‘direct manip-
ulation user-interface,” in contrast to typing postquel queries. In case of geographic data,

[PV

A T, G gt

et ate

.
i
i
3

H

i

TNO report

the results of these queries are displayed as labeled points or polylines on the map. It is
also possible to present the results in a tabular format. Further, this module allows the user
to modify Postgres data with a “direct manipulation user-interface.” The Postgres layer is
discussed in more detail in Section 4.3.

3. Anannotation layer. This layer has drawing capabilities as found in many drawing programs
(text, polylines with arrows, polygons, etc.) and allows the exchange of information between
the users of different networked workstations. Users can view and edit different annotation
overlays and look at overlays created by others: a briefing.

4. The capability of making changes in Postgres data visible without specific uscr actions
makes it possible to create dynamic displays with moving and/or changing objects; sce
Section 4.4.

5. The possibility to customize the GEO system by hiding features and options of the system
which are not needed for a specific application or adding special functions or icons by
editing metadata in the Postgres database.

In the current system only the features 1-3 have actually been implemented, while features 4 and
5 are under development.

4.3 The Postgres Layer

In the Postgres layer, one first specifies the database table and the attributes, which should be
retrieved. Then, the selection criteria can be specified by building a tree which represents the
“where” clause of the query. The resulting tree is the graphic representation of the parse tree of a
“where” clause in the Postquel query language. The operations that the user can apply to the nodes
in this tree are the productions in the context free grammar describing a Postquet “where™ clause,
although the end-user is probably not (and should not be) aware of this underlying principle. This
guarantees that all possible “where” clauses can be specified. This graphic tree building has two
advantages:

1. The graphic tree representation makes inherently complex boolean queries easier to under-
stand (parse) for the end-user.

2. It is not possible to formulate queries that result in a syntax error. The system checks the
parameter types of functions and operators and guides the user by the selection of the actual
parameters. For example, if the user chooses a function like di st ance, then he can only
select table attributes that are of the correct type (point2).

Most errors made by the users, however, arc semantic and not syntactic. This cognitive aspect
deserves future research. The productions (rewriting rules) are:

TNO repont

=8

¢ Choosing a function or operator, which is used for implementing the restriction.

¢ Choosing a table attribute, which is an operand for a selected function or operator. This may
be an attribute of another table (implementing joins) or of a previously composed query.

o Choosing a constant from arange of types (bool, int 4, point 2, polyline2, polygon2,
text, eic.) as operand. The available types are retrieved from the Postgres system tables.

¢ Choosing a boolean operator: and, or, and not. This enables the user to create more
complex queries.

The query in Figure 4.1, which retrieves (and displays) all objects of relation o1 which have a
height less than 20 and whose distance from at least one of the objects in relation 02 is less than
100 kilometers, could be composed by the following sequence:

—

. Choose operator < (float4, float4)
. Choose attribute ol.height

Choose constant and enter 20

Choose boolean AND

Choose operator < (float8, float8)
Choose operator <=> (point,point)
Choose attribute ol.loc

. Choose attribute o2.loc

© ® N e m oA w N

. Choose constant and enter 100.

Note that constants arc automatically cast to the correct type, that is, float4 in line 3 and
float8 inline 9, However, attributes can only be sclected if they are of the correct type, that is,
floatd inline 2 and point2 inline 7 and 8.

Of course, the same query could be composed by spplying the productions in another order. For
example, start with operator AND, choose operator < (float8,float8), etc. The
only restriction in the current version is that the operator has to be selected before the operands can
be chosen. So one has to know the type of the operands. The next version will apply sutomatic
typecasting (¢.g.. the system chooses between < (int4, intd) and < (float8,float8))
and will allow the user to select an operand first and insert an operator later.

TNO report

Page
19

{a] create ol (loc = point2, name = charlé, height = floatd)
[b) create changes (relname = charl6é, changedoid = oid)
[c) define rewrite rule olappend is

on append to ol

do append changes(relname = "o0l®, changedoid = current.oid)
{d] define rewrite rule oldelete is

on delete to ol

do append changes(relname = ®ol®, changedoid = current.oid)
[e) define rewrite rule olchange is

on replace to ol.name

where current.height > 20

do append changes(relname = "o0l®, changedoid = current.oid)

Figuur 4.2: The relation changes and three triggers on changes to relation ol
4.4 Dynamic Display

The dynamic display capability can be implemented by means of Postgres asynchronous portals
which notify applications when a rule has fired. The GEO system could define rules on the
relations of interest (relations that should continuously be updated on the display) and will be
notified by asynchronous portals when the rules fire.

An aliecmative is to have a Postgres relation containing the changes made to the relations of
interesi, and user defined Postgres rules that append data to this relation; see Figure 4.2 [ab]. The
advantage of this approach is that the user has more control over the type of updates, which should
cause a update of the display. This is due to the fact that he (and not the GEO system) defines the
rules with the appropriate restrictions. The GEO system just has to monitor the changes relation
by means of a defining a single rulc on this relation. Examples of threc user defined triggers that
notify GEO system of changes to relation ol are given in Figure 4.2 [c.d,¢]. Rules 4.2 [c] and
4.2 [d) cause new and deleted tuples to be (un)displayed. Rule 4.2 [e] causes objects whose name
is changed, to be redisplayed only when they are taller than 20 meters.

The GEO sysiem should remove tuples in changes which are older than, for example, 1 minute.
The tuples cannot be removed immediately after being processed becsuse more than one GEO
system could be monitoring the changes relstion.

TNO report

u§

5 Conclusion

Postgres offers several mechanisms for developing advanced GISs that have not been exploited in
GEO system yet. For example, Postgres offers historic data and versions of relations. There are
types of GISs in which thig plays an important role: C2 systems, GISs monitoring of environment,
or GISs visualizing census data. It is obvious that these kind of applications will benefit from
the automatic storage of historical data. For example, there is no extra coding required (in the
application) to solve the query:

retrieve (t.name, t.#inhabitants) from t in town(®1l January 1980"].

Applications that require geographic data at multiple scales are another example where the novel
mechanisms of Postgres, might offer solutions. We are developing a system that avoids storing
redundant data, i.e., do not simply store a separate map for each scale. This system might benefit
from a combination of techniques:

¢ Our intended implementation of the Reactive-tree (28] within Postgres.

o The use of rules to derive small scale maps of large scale databases [15]).

o Functions within Postgres arc useful for the implementation of procedural map generaliza-
tion techniques. For example, associated with a polyline or polygon is a line generalization
algorithm to reduce the number of points used, when working with small scale maps.

o Composite type attributes (relation, (set of) tuple) can be used for multi-scale representation
of a single object. These composite type attributes allow references to other tables, which
describe the refinement of objects at a larger scale map (3].

Another important rescarch area deals with the cognitive (user-interface) aspects of a GIS. Tests
with real users are necessary to determine what a * " graphic interface to GISs should look
like. It is clear that the direct use of Postquel by end-users is not optimal.

— o ———

. Acknowledgments !

Many valuable comments and suggestions on an preliminary version of this paper were made
by the following persons: Hans Jense, Carol McCann, Hans Schipper, Paul Strooper, Marcel
van Veelen, and Marco Woestenburg. We would also like to thank the Postgres Research Group
(University of California at Berkeley) and the developers of ET** for making their systems
available. Special thanks to Mike Olsen (of the Postgres Research Group) for his assistance and
testing the performance of the beta-version of the R-tree within Postgres.

TNO report

T i

1

Bibliography

[1] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica. 1:173-189, 1973.

{21 N.S. Chang and K.S. Fu. A relational database system for images. In Pictorial Information
Systems, volume 80 of Lecture Notes in Computer Science, pages 288-321. Springer-Verlag,
1980.

{3} Shi-Kuo Chang and Tosiyasu L. Kunii. Pictorial data-base systems. Computer (USA.),
14(11):13-21, November 1981.

[4) EF. Codd. A relational mode! of data for large shared data banks. Communications of the
ACM, 13(6):377-387, June 1970.

[5] Christos Faloutsos, Timos Sellis, and Nick Roussopoulos. Analysis of object oriented spatial
access methods. ACM SIGMOD, 16(3):426-439, December 1987.

[6] André Frank. Storage methods for space related data: The Field-tree. Technical Report
Bericht Nr. 71, Eidgendssische Technische Hochschule Ziirich, June 1983,

[7] Andrew U. Frank and Renato Barrera. The Field-tree: A data structure for Geographic
Information System. In Symposium on the Design and Implementation of Large Spatial
Databases, Santa Barbara, California, pages 29-44. Lecturc Notes in Computer Science
409, Springer Verlag, July 1989,

[8]) Jim Gettys, Robert W. Scheifler, and Ron Newman. Xlib — C Language X Interface, X
Window System, X Version 11, Release 4. Technical report, Digital Equipment Corporation/
Massachusetts Institute of Technology, 1989.

[9) Keith E. Gorlen. An object-oriented class library for C+ programs. Software — Practice and
Experience, 17(12):899-922, December 1987.

{10] Oliver Giinther, Efficient Structures for Geometric Data Management. Number 337 in
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1988.

{11) R.H. Giiting. Geo-relational algebra: A model and query language for geometric database
systems. In Advances in Database Technology — EDBT 88, pages 506-527, March 1988.

[12] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. ACM SIGMOD,
13:47-57, 1984,

[13) Thomas Joseph and Alfonso F. Cardenas. PICQUERY: A high level query Ianguage for

pictorial datsbase management. /EEE Transactions on Software Engineering, 14(5):630-
638, May 1988,

e -

TNO report

[14) Sudhakar Menon and Terence R. Smith. A declarative spatial query processor for Geographic
Information Systems. Photogrammetric Engineering and Remote Sensing, 55(11):1593-
1600, November 1989.

{15] Jean-Claude Miiller. Rule based gencralization: Potentials and impediments. In 4¢h Inter-
national Symposium on Spatial Data Handling, Zirich, Switzerland, pages 317-334, July
1990.

[16] George Nagy and Sharad Wagle. Geographic data processing. Computer Surveys, 11(2):139-
181, June 1979.

[17]) Mike Olson. Postgres Research Group, University of Califomia at Berkeley. Personal
Communication, February 1991.

(18] John T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic
indexes. ACM SIGMOD, 10:10-18, 1981.

(19] Nick Roussopoulos, Christos Faloutsos, and Timos Sellis. An efficient pictorial database
system for PSQL. IEEE Transactions on Software Engineering, 14(5):639-650, May 1988.

[20] Robert W. Scheifier and Jim Gettys. The X window system. ACM Transactions on Graphics,
5(2):79-109, April 1986.

{21} K.J. Schmucker. Object Oriented Programming for the Macintosh. Hayden, Hasbrouck
Heights, New Jersey, 1986.

[22] Michael Stoncbraker and Lawrence A. Rowe. The design of Postgres. ACM SIGMOD,
15(2):340-35S, 1986.

[23] Michael Stoncbraker, Lawrence A. Rowe, and Michacl Hirohama. The implementation of
Postgres. /EEE Transactions on Knowledge and Data Engineering, 2(1):125-142, March
1990.

[24] B. Stroustrup. The C** Programming language. Addison—Wesley, Reading, Mass., 1986.

(25] Peter van Qosterom. Spatial data structures in Geographic Information Systems. In NCGA's
Mapping and Geographic Information Systems, Orlando, Florida, pages 104—118, Septem-
ber 1988.

[26) Peter van Oosterom. Spatial data structures in Geographic Information Systems. In Com-
puting Science in The Netherlands, pages 463-477, 1988.

[27] Peter van Oosterom. Reactive Data Structures for Geographic Information Systems. PhD
thesis, Depantment of Computer Science, Leiden University, December 1990,

(28] Peter van Oosterom. The Reactive-tree — A storage structure for a scamiess, acaleless
geographic database. In Auto-Carto 10, Baltimore, March 1991,

TNO repont

{29) Peter van Oosterom and Eric Claassen. Orientation insensitive indexing methods for geomet-
ric objects. In 4th International Symposium on Spatial Dara Handling, Zilrich, Switzerland,
pages 1016-1029, July 1990.

{30} Peter van Oosterom, Marcel van Hekken, and Marco Woestenburg. A geographic extension
to the relational data model. In Geo '89 Symposium, The Hague, pages 319-333, October
1989,

[31) André Weinand, Erich Gamma, and Rudolf Marty. ET*+ - An object oriented application
framework in C**. In OOPSLA’88, pages 46-57, September 1988,

{32] André Weinand, Erich Gamma, and Rudolf Manty. Design and implementation of ET*+,
a seamless object-oriented application framework. Structured Programming, 10(2):63-87,
1989.

(33} Sharon Wensel! (editor). The Postgres reference manual. Technical Report Memorandum
No. UCB/ERL M88/20 (revised), Electronics Research Laboratory, College of Engincering,
April 1989,

TNO report

Page

J. Bruin P.J.M. van Oosterom C. Vijlbrief
(head of division) (project leader / author) (author)

END

FILMED
3-77

